30 research outputs found

    Collaborative Research: Nitrate Flux Associated with Vertically Migrating Phytoplankton in the Central North Pacific

    Get PDF
    This proposal will address a fundamental problem in biological oceanography format he viewpoint that vertically migrating algal mats in the open ocean are instrumental in redistributing nitrogen within the surface waters of the North Pacific Ocean. Using previously funded shiptime, the project will documents Rhizosolenia mat vertical distribution throughout the upper 100-300 m, the quantitative N inputs, and potential for NO3-release in the surface layers by mats in the central North Pacific gyre. The research will characterize depth of origin, migration times and absolute transport rates by these macroscopic associations and determine if NO3-release by mat decay is taken up by other ambient phytoplankton. In addition, the study will survey other phytoplankton that may be vertical migrators such as Ethmodiscus, Pyrocystis, Halospaera and solitary Phizosolenia to determine if they are also important components of this process. At the conclusion of the study, the project will have examined waters of the central North pacific gyre both east and west of Hawaii. This should lead to a broad spatial understanding of the importance of phytoplankton vertical migration in the oceanic waters of the North Pacific gyre

    POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program

    Get PDF
    This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u27s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly

    Sediment flux and recent paleoclimate in Jordan Basin, Gulf of Maine

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 96 (2015): 45-55, doi:10.1016/j.csr.2015.01.008.We report planktonic foraminiferal fluxes (accumulation rates) and oxygen isotopes (δ18O) from a nine-month sediment trap deployment, and δ18O from three sediment cores in Jordan Basin, Gulf of Maine. The sediment trap was deployed at 150 m, about halfway to the basin floor, and samples were collected every three weeks between August 2010 and May 2011. The planktonic foraminiferal fauna in the trap is dominated by Neogloboquadrina incompta that reached a maximum flux in the second half of October. Oxygen isotope ratios on that species indicate that on average during the collecting period it lived in the surface mixed layer, when compared to predicted values based on data from a nearby hydrographic buoy from the same period. New large diameter piston cores from Jordan Basin are 25 and 28 m long. Marine hemipelagic sediments are 25 m thick, and the sharp contact with underlying red deglacial sediments is bracketed by two radiocarbon dates on bivalves that indicate ice-free conditions began 16,900 calibrated years ago. Radiocarbon dating of foraminifera indicates that the basin floor sediments (270-290 m) accumulated at >3 m/kyr during the Holocene, whereas rates were about one tenth that on the basin slope (230 m). In principle, Jordan Basin sediments have the potential to provide time series with interannual resolution. Our results indicate the Holocene is marked by ~2°C variability in SST, and the coldest events of the 20th century, during the mid 1960s and mid 1920s, appear to be recorded in the uppermost 50 cm of the seafloor.Cruise 198 of R/V Knorr was supported by the Grayce B. Kerr Fund

    Formation of Holocene sedimentary laminae in the Black Sea and the role of the benthic flocculent layer

    Get PDF
    Holocene Black Sea sediments recovered in 1988 and 1993 from box cores and gravity cores were analyzed geochemically, microscopically, and with backscattered electron imagery (BSEI) in order to determine the temporal, geochemical, and sedimentological relationships between the benthic flocculent layer (often referred to as the fluff layer) and the formation of underlying laminated unit I sediments. Existence of a permanent benthic fluff layer in the Black Sea basin is suggested, acting as a geochemical transition layer within which all sedimentary particles are hydraulically sorted and particles subject to dissolution or organic remineralization are altered prior to accumulation. We propose that particle residence time within the benthic fluff layer is a key factor in determining sedimentary microfabric and geochemical composition of laminated unit I sediments. We present a schematic model depicting the above relationships and use it to propose a paleoflux scenario for laminae formation in the unit II sapropel

    Seasonal controls of aragonite saturation states in the Gulf of Maine

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 372–389, doi:10.1002/2016JC012373.The Gulf of Maine (GoME) is a shelf region especially vulnerable to ocean acidification (OA) due to natural conditions of low pH and aragonite saturation states (Ω-Ar). This study is the first to assess the major oceanic processes controlling seasonal variability of the carbonate system and its linkages with pteropod abundance in Wilkinson Basin in the GoME. Two years of seasonal sampling cruises suggest that water-column carbonate chemistry in the region undergoes a seasonal cycle, wherein the annual cycle of stratification-overturn, primary production, respiration-remineralization and mixing all play important roles, at distinct spatiotemporal scales. Surface production was tightly coupled with remineralization in the benthic nepheloid layer during high production seasons, which results in occasional aragonite undersaturation. From spring to summer, carbonate chemistry in the surface across Wilkinson Basin reflects a transition from a production-respiration balanced system to a net autotropic system. Mean water-column Ω-Ar and abundance of large thecosomatous pteropods show some correlation, although patchiness and discrete cohort reproductive success likely also influence their abundance. Overall, photosynthesis-respiration is the primary driving force controlling Ω-Ar variability during the spring-to-summer transition as well as over the seasonal cycle. However, calcium carbonate (CaCO3) dissolution appears to occur near bottom in fall and winter when bottom water Ω-Ar is generally low but slightly above 1. This is accompanied by a decrease in pteropod abundance that is consistent with previous CaCO3 flux trap measurements. The region might experience persistent subsurface aragonite undersaturation in 30–40 years under continued ocean acidification.Coastal Ocean Institute at Woods Hole Oceanographic Institution; National Science Foundation Grant Number: (OCE-1316040)2017-07-2

    Upward nitrate transport by phytoplankton in oceanic waters : balancing nutrient budgets in oligotrophic seas

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 2 (2014): e302, doi:10.7717/peerj.302.In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.This work has been funded by the National Science Foundation: OCE-0726726, OCE-0094591, OCE-9414372, OCE-9100888 and OCE-9415923 to TAV, and OCE-9423471 to CHP

    Siliceous microfossil succession in the recent history of two basins in Lake Baikal, Siberia

    Full text link
    As part of the international cooperative Baikal Drilling Project, siliceous microfossil assemblage succession was analyzed in two short (∼ 30-cm) sediment cores from Lake Baikal. One core was recovered from the north basin (Core 324, 55°15′N, 109°30′E), a second from between the central and southern basins (Core 316, 52°28′N, 106°5′E). The northern core had higher amounts of biogenic silica (40 g SiO 2 per 100 g dry weight sediment) compared to the southern core, and increased deposition in the more recent sediments. Weight percent biogenic silica was lower in the southern core, ranging from approximately 20–30 g SiO 2 per 100 g dry weight sediment throughout the entire core. Trends in absolute microfossil abundance mirror those of biogenic silica, with generally greater abundance in the northern core (86–275×10 6 microfossils g −1 dry sediment) compared to the southern core (94–163×10 6 microfossils g −1 dry sediment).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43073/1/10933_2004_Article_BF00735480.pd

    Carbon export and regeneration in the coastal upwelling system of Monterey Bay, central California

    Get PDF
    In order to quantify the role of coastal upwelling regions as source or sink areas for carbon, the relationships between particulate organic carbon (POC) production, export, remineralization, and accumulation were examined in Monterey Bay from 1989 through 1992. During a normal upwelling year (1989–90), a high positive correlation (r = 0.91) is observed between biweekly primary production and POC export at 450 m. Primary production values range from 500 mgC m−2 d−1 during the winter, to 2600 mgC m−2 d−1 in the spring and summer upwelling months. Corresponding deep-water (450 m) POC fluxes vary from a minimum of 10 mgC m−2 d−1 in December, to 120 mgC m−2 d−1 in May. In contrast, the mid-1991 through 1992 data sets obtained during the \u2791–92 El Nino period, show a relatively poor correlation (r = 0.23) between productivity and carbon export. Calculated ratios of POC export to POC production (defined as e-ratios) display a trend for the three-year data sets in which the e-ratio values are greatest during periods of low productivity and decrease to minimal values when surface production is high. Upwelling-induced, offshore Ekman transport of organic matter and probable seasonal changes in the planktonic community structure are the mechanisms likely to be responsible for the e-ratio trends. Based on the data sets reported from this work, a simple box model of the annual export and regeneration of particulate organic carbon is presented for the Monterey Bay region. An appreciable advective and/or recycling “loss” from the euphotic zone of 362.8 gC m−2 y−1 is estimated, representing primarily algal material transported offshore and/or recycled within the upper 100 m of the water column. Annual mid-water (≈100– 450 m) and deep-water (\u3e450 m) POC remineralization rates of 71.8 gC m−2 y−1 of 7.2 gC m−2 y−1, respectively, are reported for Monterey Bay. The average POC rain rate to the underlying slope sediments is sufficient to satisfy reported benthic utilization requirements without invoking an additional input source of POC via deep lateral advection and/or the downslope movement of particulate material

    Biogenic Matter Diagenesis on the Sea Floor: A Comparison Between Two Continental Margin Transects

    Get PDF
    Benthic chamber measurements of the reactants and products involved with biogenic matter diagenesis (oxygen, ammonium, nitrate, silicate, phosphate, TCO2, alkalinity) were used to define fluxes of these solutes into and out of the sediments off southern and central California. Onshore to offshore transects indicate many similarities in benthic fluxes between these regions. The pattern of benthic organic carbon oxidation as a function of water depth, combined with published sediment trap records, suggest that the supply of organic carbon from vertical rain can just meet the sedimentary carbon oxidation + burial demand for the central California region between the depths 100-3500 m. However, there is not enough organic carbon raining through the upper water column to support its oxidation and burial in the basins off southern California. Lateral transport and focusing of refractory carbon within these basins is proposed to account for the carbon buried. The organic carbon burial efficiency is greater off southern California (40-60%) compared to central California (2-20%), even though carbon rain rates are comparable. Oxygen uptake rates are not sensitive to bottom water oxygen concentrations nor to the bulk wt. % organic carbon in surficial sediments. Nitrate uptake rates are well defined by the depth of oxygen penetration into the sediments and the overlying water column nitrate concentration. Nitrate uptake accounts for about 50% of the total denitrification taking place in shelf sediments and denitrification (0.1-1.0 mmolN/m2d) occurs throughout the entire study region. The ratio of carbon oxidized to opal dissolved on the sea floor is constant (0.8 ± 0.2) through a wide range of depths, supporting the hypothesis that opal dissolution kinetics may be dominated by a highly reactive phase. Sea floor carbonate dissolution is negligible within the oxygen minimum zone and reaches maximal rates just above and below this zone (0.2-2.0 mmol/m2d)

    High concentrations of marine snow and diatom algal mats in the North Pacific Subtropical Gyre : implications for carbon and nitrogen cycles in the oligotrophic ocean

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 52 (2005): 2315-2332, doi:10.1016/j.dsr.2005.08.004.A Video Plankton Recorder (VPR) and remotely operated vehicle (ROV) were utilized on three cruises in the oligotrophic North Pacific Subtropical Gyre (NPSG) between 1995 and 2002 to quantify the size and abundance of marine snow and Rhizosolenia diatom mats within the upper 305 m of the water column. Quantitative image analysis of video collected by the VPR and an ROV-mounted particle imaging system provides the first transect of marine snow size and abundance across the central North Pacific gyre extending from 920 km NW of Oahu to 555 km off Southern California. Snow abundance in the upper 55 m was surprisingly high for this oligotrophic region, with peak values of 6.0-13.0 x 103 aggregates m-3 at the western and eastern-most stations. At stations located in the middle of the transect (farthest from HI and CA), upper water column snow abundance displayed values of ~0.5-1.0 x 103 aggregates m-3. VPR and ROV imagery also provided in-situ documentation of the presence of nitrogen-transporting, vertically migrating Rhizosolenia mats from the surface to >300 m with mat abundances ranging from 0-10 mats m-3. There was clear evidence that Rhizosolenia mats commonly reach sub-nutricline depths. The mats were noted to be a common feature in the North Pacific gyre, with the lower salinity edge of the California Current appearing to be the easternmost extent of their oceanic distribution. Based on ROV observations at depth, flux by large (>1.5 cm) mats is revised upward 4.5 fold, yielding an average value of 40 µmol N m-2 d-1, a value equaling previous estimates that included much smaller mats visible only to towed optical systems. Our results suggest that the occurrence across a broad region of the NPSG of particulate organic matter (POM) production events represented by high concentrations of Rhizosolenia mats, associated mesozooplankton, and abundant detrital marine aggregates may represent significant stochastic components in the overall carbon, nitrogen and silica budgets of the oligotrophic subtropical gyre. Likewise, their presence has important implications for the proposed climate-driven, ecosystem reorganization or domain shift occurring in the NPSG.This project was primarily supported by NSF Biological Oceanography Program grant OCE-9423471 to C. Pilskaln, OCE-9415923 and OCE-9414372/OCE-0094591 to T. Villareal, and assisted by OCE-9314533 to D. Caron
    corecore